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Editorial	O PEN ACCESS

Are all types of migraine channelopathies?

Wenjing Tang, Shengyuan Yu

Migraine is a typical episodic brain disorder. Based on 
migraine attacks with or without transient aura symptoms, 
migraine can be divided into migraine with aura (MA, 
including visual, sensory, motor, or speech difficulties) 
and migraine without aura (MO). Cortical spreading 
depression (CSD) is believed as the pathophysiological 
mechanism of aura. Familial hemiplegic migraine (FHM) 
is an autosomal dominant migraine with hemiplegic 
aura, which is extensively researched as a migraine model 
for pathophysiology because of the definite mutations 
of three disease-causing genes coding ion channels. 
Numerous studies on CSD and FHM tried to elucidate 
the role of ion channels in the migraine development. 
Studies on ion channel antagonists also showed efficiency 
in migraine prophylactic treatment. All above bring 
a false appearance that migraine is a channelopathy. 
However, with the discovery of PRRT2 gene related brain 
disorders, it is challenging whether migraine, even FHM, 
is a channelopathy. Over 5000 SNPs of 155 ion channel 
coding genes were all denied the connection between 
themselves and migraine susceptibility by a candidate 
gene linkage study. And genome-wide association 
studies not only denied the connection between common 
migraine and the three FHM causing genes, but also 
found 12 non-ion channel coding genes highly related to 
common migraine. More and more contrary evidences 
indicate that migraine is a kind of ion channel related 
disorder, which needs further studies on multiple levels 
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from one single gene function to several genes and their 
encoding ion channels interactions.

Migraine is a primary brain disorder, causing episodic 
headache attacks with photophobia, phonophobia, nausea 
and vomiting  [1]. It has been confirmed that migraine 
is highly impacted by genetic factors [2], and most of 
basic understanding of neurobiological mechanisms are 
contributed to genetic studies on aura and pain pathways 
in migraine [3]. 

Channelopathy has three features: 
1) � symptoms often present as paroxysmal attacks 

with normal function interictally; 
2) � most channelopathies are inherited as autosomal 

dominant traits; 
3) � most channelopathies cause single-organ 

involvement [4]. 
Familial hemiplegic migraine (FHM) is characterized 

by migraine attacks, which is with transient, unilateral 
motor weakness as its episodic aura. FHM is an autosomal 
dominant migraine, three encoding protein genes have 
been identified: CACNA1A encodes α1 subunit of calcium 
channel Cav2.1 [5], ATP1A2 encodes α2 subunit of Na+/
K+-ATPase pump [6], and SCN1A encodes α subunit of 
sodium channel Nav1.1 [7]. All these proteins are specially 
expressed on nervous system, and all the mutations 
mainly cause brain dysfunction  [5–7]. Series studies on 
FHM indicated that mutations on Cav2.1 and ATP1A2 
increased the concentration of glutamate in synapses 
and disturbed the excitatory and inhibitory balance, 
which induced the brain dysfunction [8]. Although the 
same result has not yet been concluded firmly enough 
from the functional studies on sodium channels (Nav1.1) 
owe to the more perplexed expression and structure of 
Nav1.1 and its encoding gene SCN1A [9–11], it firmly 
concluded that all the mutations of the three genes cause 
brain dysfunction [5–7]. All above indicate that FHM is 
a definitely channelopathy. Are other types of migraine 
channelopathies?

It is believed that cortical spreading depression 
(CSD) contributes to aura [12–14], which is a slowly 
propagating wave, causing depolarization of neural cells 
and silencing brain electrical activity for several minutes 
[12–14]. Studies focusing on CSD described a scenario 
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of collapsing of ion homeostasis, which included a rapid 
outward current of K+, a rapid inward current of Na+, Ca2+ 
and Cl-, and a transient inward current of H+ [13, 15, 16]. 
This scenario causes Ca2+ intracellular increasing while 
K+ and glutamate releasing to the interstitium, which 
changes the excitability of local brain cells then turns 
on a positive-feedback cycle and finally induces brain 
dysfunction resulting in migraine [8, 12, 17]. Multiple 
ion channels involve in different stages of the initiation 
and propagation of CSD, which implies that CSD is a 
presentation of channelopathies or ion channel related 
disorders and migraine with aura may be channelopathic 
disorder.

Many other studies focused on the activation and 
sensitization of trigeminovascular system (TGVS), 
which mainly involved in the releasing vasoactive 
proinflammatory factors from trigeminal ganglion cells, 
meningeal neurogenic inflammation surrounding the 
perivascular afferents, and the formation of a positive 
feedback triggering the next endogenous neurogenic 
inflammatory process [18–21]. Most receptors of 
proinflammatory factors are ion channels, including 
voltage-gated ion channels and ligand-gated ion 
channels: sodium channels (Nav1.7, Nav1.8, Nav1.9) 
[22], potassium channels (K2P, KV1, etc.) [23–25], ATP 
receptors (P2X) [26, 27], acid-sensing ion channels 
(ASICs) [28, 29], transient receptor potential (TRP) 
ion channel family (TRPV1, TRPA1, TRPM8, etc.) [30, 
31], etc. All of them can be found around the sensitized 
trigeminal nuclei, trigeminal ganglia and related blood 
vessels [18, 32–34]. However, these ion channels can 
also be found in dorsal root ganglia, dorsal horn of the 
spinal cord and different levels along the pain pathway 
in neuropathic pain [35, 36], which means that these ion 
channels are not specific to the migraine pathophysiology 
and it seems that these ion channels need exogenic 
triggers to be activated, but triggers of migraine originate 
from nervous system itself. Thus, ion channels involved 
in the activation and sensitization of TGVS just proved 
that migraine is an ion-channel related disorder.

Another indirect evidence to prove that migraine is 
highly associated with ion channel is that some effective 
prophylactic drugs for migraine such as amitriptyline, 
valproate and topiramate could inactivate sodium 
channels and other ion channels [22, 37, 38]. 

All above suggest that ion channel is an essential part 
of migraine pathophysiology, but not all types of migraine 
are channelopathies.

First, not all genes linked to monogenic migraine 
syndromes encode ion channels. One third of CADASIL 
(cerebral autosomal dominant arteriopathy with 
subcortical infarcts and leukoencephalopathy) patients 
suffer from migraine with aura in the third decade of 
life [39]. Mutations in NOTCH3 have been identified 
as the responsible cause, which encodes Notch3 on cell 
membrane and interacts with its ligands, provoking 
intracellular GPCR and ERK signaling pathways, 

mediating the neurogenesis and angiogenesis [40–42]. 
So far, it remains unknown how the NOTCH3 mutations 
in CADASIL triggers aura and headache, and whether 
these mutations lead to CSD and ionic chaos [43]. The 
similar condition has also been found in RVCL (retinal 
vasculopathy with cerebral leukodystrophy) with TREX1 
mutations [44], and FASPS (familial advanced sleep 
phase syndrome) with CSNK1D mutations [45]. TREX1 
is the coding gene of a nuclear protein, three prime repair 
exonuclease 1 [44]; while CSNK1D is a member of the 
casein kinase I gene family and its corresponding protein 
may regulate DNA replication and repairing [46]. Both 
of them seem irrelevant to ion channels. The mutations 
of PRRT2 cause a series brain disorders which had 
been usually regarded as channelopathies: hemiplegic 
migraine, infantile convulsions, paroxysmal dyskinesia 
[47]. However, PRRT2 encodes a transmembrane 
protein with a proline-rich domain in N-terminal half 
and is predominantly expressed in central nervous 
system during fetal and postnatal stages [47, 48]. Yeast 
2-hybrid experiment elucidates that PRRT2 modulates 
the neurotransmitters releasing indirectly by interacting 
with synaptosomal-associated protein 25 kDA (SNAP25), 
which means PRRT2 mutations can interfere the 
excitatory - inhibitory homeostasis indirectly though it is 
not an ion channel protein [49]. Considered as the fourth 
FHM gene by more neurologists, the emergence of PRRT2 
implies that migraine is far more than a channelopathy. 

Second, both candidate gene association study and 
genome-wide associated study (GWAS) failed to confirm 
the involvement of ion channel genes in common 
migraineurs. Nyholt et al. screened 5257 SNPs covering 
155 ion channel genes in over 3 thousand migraineurs, 
but none of them has a positive association [50]. Bouje et 
al. from the international headache genetics consortium 
re-evaluated genes from candidate gene association 
studies in migraine systematically using a large GWA 
data set. And the result was also negative, even the three 
well-known FHM genes all showed negative evidence 
for the involvement in common polygenic migraine 
[51]. A possible theory to explain the results above is 
that common migraine has multiple susceptibility genes 
which modulate ion and neurotransmitter homeostasis 
in a more subtle and multiplex manner, compared with 
monogenic migraine [3]. 

Third, three large GWASs and a subsequent meta-
analysis identified 13 susceptibility genes underlying 
common migraine based on large population [3]. Except 
TRPM8, other 12 genes all encode non-ion channel 
proteins. Screened those 12 genes on NCBI Gene 
database, we found that most of them are highly-related 
to cell migration and differentiation. MEF2D, ASTN2 
have been found in nervous system exerting a role in 
neural cell differentiation and development [52, 53]; 
PHACTR1 exerts a regulating function of angiogenesis 
and vascular endothelial cells [54]; PRDM16 and FHL5 
are transcription factors of cellular differentiation 
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or maturation, while TGFBR2 belongs to the TGFR 
superfamily which modulates the transcription of 
proliferation relevant proteins, especially in the vascular 
endothelial cell proliferation process [55–57]; TSPAN2 
expresses on cellular membrane, while MMP16 in 
extracellular matrix, both exert a broad function in cell 
development, activation, modeling and motion [58, 59]. 
So far, a few experiments have showed that AJAP1 is a 
tumor suppressor while others indicated that MTDH is 
an oncogenesis factor, especially for astrocytoma [60, 61]. 
And LRP1 is the only protein to hinder cell apoptosis and 
acts as a scavenger of toxic protein deposit [62, 63]. Tolner 
et al. speculated the possible roles of these genes in the 
migraine pathophysiology [3], but the results of GWASs 
still need to be confirmed in functional and ethnological 
studies [3]. The results from GWASs further imply 
that as a complicated neurological condition, migraine 
involving in multifactorial mechanisms disturbing the 
brain homeostasis from single causal gene to multiple 
genes interact with each other [64], from molecules to the 
whole nervous system, from genotype to phenotype, not 
only limited in ion channels.

Migraine pathophysiology has been studied over 
30 decades, but the mist on it is still uncovered. To the 
channelopathies, migraine may be one part of its wide 
range of clinical spectrum; to the genetic vasculopathies, 
migraine may be one symptom of its wide range of clinical 
manifestations; to the migraine itself, it is an unstable 
condition of different levels in nervous system including 
brain tissue, trigeminovascular system and nociceptors on 
meninges, and each level may have several factors finally 
make headache happen. As a multifactorial disorder, 
ion channel is a pivotal part involving in migraine 
development, the relationship between ion channel and 
migraine needs to be studied further.
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